f5d882c106aa2202d03ead930f7af2ee5d612b4c,nilearn/regions/rena_clustering.py,,_compute_weights,#Any#Any#,19
Before Change
Weights corresponding to all edges in the mask.
shape: (n_edges,)
data = masker.inverse_transform(masked_data).get_data()
weights_deep = np.sum(np.diff(data, axis=2) ** 2, axis=-1).ravel()
weights_right = np.sum(np.diff(data, axis=1) ** 2, axis=-1).ravel()
After Change
n_samples, n_features = X.shape
mask = mask_img.get_data().astype("bool")
shape = mask.shape
data = np.empty((shape[0], shape[1], shape[2], n_samples))
for sample in range(n_samples):
data[:, :, :, sample] = \
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: nilearn/nilearn
Commit Name: f5d882c106aa2202d03ead930f7af2ee5d612b4c
Time: 2019-04-18
Author: jerome-alexis.chevalier@inria.fr
File Name: nilearn/regions/rena_clustering.py
Class Name:
Method Name: _compute_weights
Project Name: nilearn/nilearn
Commit Name: b32c8a990a744e135c8787456ef5b62ab40d6da7
Time: 2019-04-18
Author: jerome-alexis.chevalier@inria.fr
File Name: nilearn/regions/tests/test_rena_clustering.py
Class Name:
Method Name: test_rena_clustering
Project Name: nilearn/nilearn
Commit Name: 6c929b84f39a8c683808c8a16285e53bcd1262d2
Time: 2018-03-08
Author: dkamalakarreddy@gmail.com
File Name: examples/03_connectivity/plot_rest_clustering.py
Class Name:
Method Name: