028274e8f52c54b10d632a61ee19a6e64f7a90e6,examples/MotorImagery/two_class_motor_imagery.py,,,#,24
Before Change
from moabb.datasets.physionet_mi import PhysionetMI
from moabb.datasets.openvibe_mi import OpenvibeMI
datasets = [AlexMI(), OpenvibeMI(), BNCI2015004(motor_imagery=True),
PhysionetMI(), GigaDbMI(), BBCIEEGfNIRS()]
pipelines = OrderedDict()
pipelines["MDM"] = make_pipeline(Covariances("oas"), MDM())
pipelines["TS"] = make_pipeline(Covariances("oas"), TSclassifier())
pipelines["CSP+LDA"] = make_pipeline(Covariances("oas"), CSP(8), LDA())
// pipelines["CSP+SVM"] = make_pipeline(Covariances("oas"), CSP(8), SVC())
context = MotorImageryTwoClasses(datasets=datasets, pipelines=pipelines)
results = context.evaluate(verbose=True)
for p in results.keys():
results[p].to_csv("../../results/MotorImagery/TwoClass/%s.csv2" % p)
results = pd.concat(results.values())
print(results.groupby("Pipeline").mean())
res = results.pivot(values="Score", columns="Pipeline")
sns.lmplot(data=res, x="CSP+LDA", y="TS", fit_reg=False)
plt.xlim(0.4, 1)
plt.ylim(0.4, 1)
plt.plot([0.4, 1], [0.4, 1], ls="--", c="k")
After Change
context = LeftRightImagery(pipelines, WithinSessionEvaluation(), datasets)
context.process()
for v in context.results.data.values():
print(v)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: NeuroTechX/moabb
Commit Name: 028274e8f52c54b10d632a61ee19a6e64f7a90e6
Time: 2018-02-14
Author: vjayaram@danube.is.localnet
File Name: examples/MotorImagery/two_class_motor_imagery.py
Class Name:
Method Name:
Project Name: alfredfrancis/ai-chatbot-framework
Commit Name: d3d75272141f7dfabcddb743d42c0c6d367e5f4d
Time: 2018-04-22
Author: alfredfranciz@gmail.com
File Name: app/nlu/intent_classifer.py
Class Name: IntentClassifier
Method Name: predict
Project Name: studioml/studio
Commit Name: 3ad704a981099b74122cd4f181c862f8ba83f55a
Time: 2020-07-29
Author: andrei.denissov@cognizant.com
File Name: studio/experiment.py
Class Name:
Method Name: create_experiment