5ab5db26ff2cf0f09804b34b5533c8d59f53667b,frcnn/rcnn.py,RCNN,loss,#RCNN#Any#,73
Before Change
bbox_offset_cleaned, bbox_offsets_target_labeled)
// Hack to avoid having nan loss.
reg_loss = tf.cond(tf.is_nan(reg_loss), lambda: tf.constant(0.0, dtype=tf.float32), lambda: reg_loss)
return {
"rcnn_cls_loss": cls_loss,
"rcnn_reg_loss": reg_loss,
After Change
labels=cls_target_one_hot, logits=cls_score_labeled
)
prediction_dict["cross_entropy_per_proposal"] = cross_entropy_per_proposal
// Second we need to calculate the smooth l1 loss between
// `bbox_offsets` and `bbox_offsets_target`.
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 3
Instances Project Name: tryolabs/luminoth
Commit Name: 5ab5db26ff2cf0f09804b34b5533c8d59f53667b
Time: 2017-06-29
Author: javirey@gmail.com
File Name: frcnn/rcnn.py
Class Name: RCNN
Method Name: loss
Project Name: scipy/scipy
Commit Name: eae6badd524c2c9c52c84c0ef3be6e6745a83bdd
Time: 2013-06-20
Author: argriffi@ncsu.edu
File Name: scipy/linalg/_matfuncs_inv_ssq.py
Class Name:
Method Name: fractional_matrix_power
Project Name: tryolabs/luminoth
Commit Name: c5a085fb3709aebb1d99a27fce9700961fa8fd83
Time: 2017-09-05
Author: iangtayler@gmail.com
File Name: luminoth/datasets/object_detection_dataset.py
Class Name: ObjectDetectionDataset
Method Name: _augment
Project Name: calico/basenji
Commit Name: 6b5e5027e4ebc7bb09df3520704f44edb929c86d
Time: 2018-08-12
Author: drk@calicolabs.com
File Name: basenji/augmentation.py
Class Name:
Method Name: augment_stochastic_rc