32ab09487234c61244b2d11fd0bf0a13a96969d1,tests/test_pm_imagenet.py,,equal,#Any#Any#,17
Before Change
def equal(x,y):
return torch.le(torch.dist(x, y), 1e-6)
@pytest.mark.parametrize("model_name, pretrained", pm_args)
def test_pm_imagenet(model_name, pretrained):
print("test_pm_imagenet("{}")".format(model_name))
After Change
def equal(x,y):
return torch.all(torch.lt(torch.abs(torch.add(x, -y)), 1e-12))
@pytest.mark.parametrize("model_name, pretrained", pm_args)
def test_pm_imagenet(model_name, pretrained):
print("test_pm_imagenet("{}")".format(model_name))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: Cadene/pretrained-models.pytorch
Commit Name: 32ab09487234c61244b2d11fd0bf0a13a96969d1
Time: 2018-12-13
Author: remi.cadene@icloud.com
File Name: tests/test_pm_imagenet.py
Class Name:
Method Name: equal
Project Name: NeuromorphicProcessorProject/snn_toolbox
Commit Name: c570664aadb7cd1a3b32d2c6842e88e42150e18e
Time: 2017-05-05
Author: bodo.rueckauer@gmail.com
File Name: snntoolbox/core/inisim.py
Class Name:
Method Name: get_new_mem
Project Name: pymc-devs/pymc3
Commit Name: 0402aab9594ec7c4f63c4ea35a52428d424652b4
Time: 2020-12-22
Author: 28983449+ricardoV94@users.noreply.github.com
File Name: pymc3/distributions/discrete.py
Class Name: HyperGeometric
Method Name: logp