20c65469fe1e090f4d51322178655c7253b85e93,test/examples/simple_gp_regression_test.py,,test_posterior_latent_gp_and_likelihood_with_optimization,#,78
Before Change
// We should learn optimal hyperparmaters
// bias should be near 0
params = dict (posterior_observation_model.named_parameter_groups())["params"]
constant_value = params.constant_mean.data.squeeze()[0]
assert(math.fabs(constant_value) < .05)
After Change
infer = Inference(prior_observation_model)
posterior_observation_model = infer.run(train_x, train_y, optimize=True)
test_function_predictions = posterior_observation_model(test_x)
mean_abs_error = torch.mean(torch.abs(test_y - test_function_predictions.mean()))
assert(mean_abs_error.data.squeeze()[0] < 0.01)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: cornellius-gp/gpytorch
Commit Name: 20c65469fe1e090f4d51322178655c7253b85e93
Time: 2017-07-18
Author: jrg365@cornell.edu
File Name: test/examples/simple_gp_regression_test.py
Class Name:
Method Name: test_posterior_latent_gp_and_likelihood_with_optimization
Project Name: mne-tools/mne-python
Commit Name: 017d156706984b88a524b146ec71415c65b42391
Time: 2019-05-14
Author: w.m.vanvliet@gmail.com
File Name: examples/inverse/plot_dics_source_power.py
Class Name:
Method Name:
Project Name: biotite-dev/biotite
Commit Name: b226add036b6a7693618f515641f939e1ab9bb0e
Time: 2020-05-26
Author: tom.mueller@beachouse.de
File Name: doc/examples/scripts/structure/base_pairs.py
Class Name:
Method Name: