with tf.name_scope(name) as scope:
self._name = scope
for dtype, shape, is_asset in output_dtype_shape_and_is_asset:
output_tensor = tf.placeholder(dtype, shape)
if is_asset and output_tensor.dtype != tf.string:
raise ValueError(("Tensor {} cannot represent an asset, because it "
"is not a string.").format(output_tensor.name))
self._output_infos.append(_AnalyzerOutputInfo(