e970678d95f88bf5a793c4686f3a5a341bfb002c,sklearn/cluster/_feature_agglomeration.py,AgglomerationTransform,transform,#AgglomerationTransform#Any#,24

Before Change


        
        check_is_fitted(self)

        X = check_array(X)
        if len(self.labels_) != X.shape[1]:
            raise ValueError("X has a different number of features than "
                             "during fitting.")
        if self.pooling_func == np.mean and not issparse(X):

After Change


        
        check_is_fitted(self)

        X = self._validate_data(X, reset=False)
        if self.pooling_func == np.mean and not issparse(X):
            size = np.bincount(self.labels_)
            n_samples = X.shape[0]
            // a fast way to compute the mean of grouped features
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 2

Instances


Project Name: scikit-learn/scikit-learn
Commit Name: e970678d95f88bf5a793c4686f3a5a341bfb002c
Time: 2020-11-20
Author: thomasjpfan@gmail.com
File Name: sklearn/cluster/_feature_agglomeration.py
Class Name: AgglomerationTransform
Method Name: transform


Project Name: sebp/scikit-survival
Commit Name: 23b64bd73ebda3c3b934519729e5d37d84eefcbe
Time: 2021-03-07
Author: sebp@k-d-w.org
File Name: sksurv/linear_model/coxnet.py
Class Name: CoxnetSurvivalAnalysis
Method Name: predict


Project Name: sebp/scikit-survival
Commit Name: 23b64bd73ebda3c3b934519729e5d37d84eefcbe
Time: 2021-03-07
Author: sebp@k-d-w.org
File Name: sksurv/linear_model/coxph.py
Class Name: CoxPHSurvivalAnalysis
Method Name: predict


Project Name: sebp/scikit-survival
Commit Name: fbf10559a0b3707bcb9b192d3121314402c84a78
Time: 2021-03-06
Author: sebp@k-d-w.org
File Name: sksurv/ensemble/boosting.py
Class Name: ComponentwiseGradientBoostingSurvivalAnalysis
Method Name: predict