Returns details about the training history at each epoch.
if len(y.shape) == 1:
self.classes_ = list(np.unique(y))
if self.loss == "categorical_crossentropy":
y = to_categorical(y)
else:
self.classes_ = np.arange(0, y.shape[1])
After Change
fit_args = copy.deepcopy(self.filter_sk_params(Sequential.fit))
fit_args.update(kwargs)
history = self.model.fit(X, y, **fit_args)
return history
def filter_sk_params(self, fn, override={}):