0230c39422548acc35f2df49e5a7f40c06a76ee3,tests/test_architectures.py,,test_shallow_CNN,#,45
Before Change
def test_shallow_CNN():
run(use_deep_CNN=False, use_RNN=False, label="Shallow CNN",
golden_results=OrderedDict([("Loss", 0.70371496533279465),
("Balanced accuracy", 55.639097744360896),
("auROC", 0.50877192982456143),
("auPRC", 0.58026674651508325),
("Recall at 5% FDR", 9.5238095238095237),
("Recall at 10% FDR", 9.5238095238095237),
("Recall at 20% FDR", 9.5238095238095237),
("Num Positives", 21),
("Num Negatives", 19)]))
def test_deep_CNN():
After Change
def test_shallow_CNN():
run(use_deep_CNN=False, use_RNN=False, label="Shallow CNN",
golden_results=golden_results_shallow_CNN)
def test_deep_CNN():
run(use_deep_CNN=True, use_RNN=False, label="Deep CNN",
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 3
Instances
Project Name: kundajelab/dragonn
Commit Name: 0230c39422548acc35f2df49e5a7f40c06a76ee3
Time: 2017-04-24
Author: agitter@users.noreply.github.com
File Name: tests/test_architectures.py
Class Name:
Method Name: test_shallow_CNN
Project Name: rail-berkeley/softlearning
Commit Name: a41f2ff4c1437f0b61e76265c31bdec71be0556f
Time: 2019-04-26
Author: hartikainen@berkeley.edu
File Name: softlearning/algorithms/sql.py
Class Name: SQL
Method Name: get_diagnostics
Project Name: kundajelab/dragonn
Commit Name: 0230c39422548acc35f2df49e5a7f40c06a76ee3
Time: 2017-04-24
Author: agitter@users.noreply.github.com
File Name: tests/test_architectures.py
Class Name:
Method Name: test_deep_CNN
Project Name: rail-berkeley/softlearning
Commit Name: a41f2ff4c1437f0b61e76265c31bdec71be0556f
Time: 2019-04-26
Author: hartikainen@berkeley.edu
File Name: softlearning/algorithms/sac.py
Class Name: SAC
Method Name: get_diagnostics