39cb01dfe48cf64a02de3cdb41bf0e2d647b20d9,pymc3/variational/flows.py,AbstractFlow,add_param,#AbstractFlow#Any#Any#Any#Any#,145
Before Change
dtype = theano.config.floatX
spec = self.__param_spec__[name]
shape = tuple(eval(s, {"d": self.dim}) for s in spec)
if self.islocal:
if user is None:
raise LocalGroupError("Need parameters for local group flow")
else:
shape = (-1,) + shape
return tt.as_tensor(user).reshape(shape)
else:
if user is None:
return theano.shared(
np.asarray(np.random.normal(size=shape) * self.__jitter + ref).astype(dtype),
name=name
)
else:
return tt.as_tensor(user).reshape(shape)
@property
def params(self):
return collect_shared_to_list(self.shared_params)
After Change
if self.islocal:
raise opvi.LocalGroupError("Need parameters for local group flow")
if self.batched:
if self.batch_size is None:
raise opvi.BatchedGroupError("Need batch size to infer parameter shape")
shape = (self.batch_size,) + shape
return theano.shared(
np.asarray(np.random.normal(size=shape) * self.__jitter + ref).astype(dtype),
name=name
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: pymc-devs/pymc3
Commit Name: 39cb01dfe48cf64a02de3cdb41bf0e2d647b20d9
Time: 2017-09-02
Author: maxim.v.kochurov@gmail.com
File Name: pymc3/variational/flows.py
Class Name: AbstractFlow
Method Name: add_param
Project Name: rtqichen/torchdiffeq
Commit Name: 18b6c1229b68daeeaaef2266d82ca475f83a7445
Time: 2020-12-18
Author: rtqichen@gmail.com
File Name: torchdiffeq/_impl/rk_common.py
Class Name: RKAdaptiveStepsizeODESolver
Method Name: __init__
Project Name: rtqichen/torchdiffeq
Commit Name: b914816142ae2776f531be1c0b49812a0bfde91f
Time: 2020-08-04
Author: 33688385+patrick-kidger@users.noreply.github.com
File Name: torchdiffeq/_impl/adams.py
Class Name: VariableCoefficientAdamsBashforth
Method Name: __init__