pd.DataFrame(vecs1 - np.mean(vecs1, axis=0))
).values
bias_vecs2 = l2_normalize_rows(
pd.DataFrame(vecs2 - np.mean(vecs2, axis=0))
).values
grid = bias_vecs1.dot(bias_vecs2.T)
for i in range(grid.shape[1]):
After Change
for i in range(grid.shape[1]):
col_bias = np.max(grid.iloc[:, i]) - np.mean(grid.iloc[:, i])
most_biased = np.argmax(grid.iloc[:, i])
comparison = centered2.index[i]
// Uncomment this to be sad
// print("%4.4f %s => %s" % (col_bias, comparison, most_biased))
bias_numbers.append(col_bias)