9885acac4edf3034b1b6e2335c61dd80d7abe8f9,pynets/utils.py,,collect_pandas_df_make,#Any#Any#Any#Any#,174
Before Change
means.append(np.nanmean(valsB))
else:
means.append(np.nan)
df_concatted_weight_means = pd.DataFrame(means).transpose()
df_concatted_weight_means.columns = [str(col) + "_mean" for col in measures]
df_concatted_std.columns = [str(col) + "_std_dev" for col in df_concatted_std.columns]
result = pd.concat([df_concatted, df_concatted_std, df_concatted_weight_means], axis=1)
df_concatted_final = result.reindex(sorted(result.columns), axis=1)
After Change
if rand_forest is True:
df_rnd_forest = random_forest_ensemble(df_concat.loc[:, measures])
if network:
net_pick_out_path = "%s%s%s%s%s%s%s%s" % (subject_path, "/", str(ID), "_", name_of_network_pickle, "_", network, "_rand_forest")
else:
net_pick_out_path = "%s%s%s%s%s%s" % (subject_path, "/", str(ID), "_", name_of_network_pickle, "_rand_forest")
df_rnd_forest.to_pickle(net_pick_out_path)
df_rnd_forest.to_csv(net_pick_out_path + ".csv", index=False)

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: dPys/PyNets
Commit Name: 9885acac4edf3034b1b6e2335c61dd80d7abe8f9
Time: 2018-11-06
Author: dpisner@utexas.edu
File Name: pynets/utils.py
Class Name:
Method Name: collect_pandas_df_make
Project Name: analysiscenter/batchflow
Commit Name: a5bfb8dd4a92293ec239b219cb79447ca919a669
Time: 2017-06-22
Author: rhudor@gmail.com
File Name: dataset/batch_image.py
Class Name: ImagesBatch
Method Name: assemble
Project Name: catalyst-team/catalyst
Commit Name: 1ef3ad90a3423ed15ca41e0ea4e81012ebe84a9f
Time: 2020-08-11
Author: scitator@gmail.com
File Name: catalyst/data/scripts/project_embeddings.py
Class Name:
Method Name: main