ff62eb251b04b8301e71aee970bdb157f2649fa9,keras/regularizers.py,EigenvalueRegularizer,__call__,#EigenvalueRegularizer#Any#,39
Before Change
// multiplied by the given regularization gain
regularized_loss = loss + (main_eigenval ** 0.5) * self.k
return K.in_train_phase(regularized_loss[0, 0], loss)
class WeightRegularizer(Regularizer):
After Change
K.dot(K.transpose(main_eigenvect), main_eigenvect))
// Multiply by the given regularization gain.
regularization = (main_eigenval ** 0.5) * self.k
return K.sum(regularization)
class L1L2Regularizer(Regularizer):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: keras-team/keras
Commit Name: ff62eb251b04b8301e71aee970bdb157f2649fa9
Time: 2016-12-14
Author: francois.chollet@gmail.com
File Name: keras/regularizers.py
Class Name: EigenvalueRegularizer
Method Name: __call__
Project Name: broadinstitute/keras-rcnn
Commit Name: 30f1daed1ffb295f5bb2e530d8946ca680756ff7
Time: 2018-11-21
Author: mbroisin@wma13-b01.broadinstitute.org
File Name: keras_rcnn/layers/_object_detection.py
Class Name: ObjectDetection
Method Name: call
Project Name: keras-team/keras
Commit Name: ff62eb251b04b8301e71aee970bdb157f2649fa9
Time: 2016-12-14
Author: francois.chollet@gmail.com
File Name: keras/regularizers.py
Class Name: WeightRegularizer
Method Name: __call__