// generate predictions
preds = final_preds(output[-1].data.cpu(), meta["center"], meta["scale"], [64, 64])
for n in range(output[-1].size(0)):
predictions[meta["index"][n], :, :] = preds[n, :, :]
After Change
loss = 0
for o in output:
loss += criterion(o, target_var)
acc = accuracy(score_map.cuda(), target, idx)
// generate predictions
preds = final_preds(score_map, meta["center"], meta["scale"], [64, 64])
for n in range(score_map.size(0)):