samples = [labeled_entries[
self.random_state_.randint(0, len(labeled_entries))
]for _ in range(sample_size)]
return Dataset(*zip(*samples))
def teach_students(self):
Train each model (student) with the labeled data using bootstrap
After Change
X, y = self.dataset.get_labeled_entries()
samples_idx = [
self.random_state_.randint(0, X.shape[0]) for _ in range(sample_size)]
return Dataset( X[samples_idx], np.array(y)[samples_idx] )
// return self.dataset.labeled_uniform_sample(sample_size, replace=True)
def teach_students(self):