Returns a score for a protein/ligand pair.
features = self.featurizer.featurize_complexes([ligand_file], [protein_file])
dataset = NumpyDataset(X=features, y=None, w=None, ids=None)
score = self.model.predict(dataset)
return score
After Change
def score(self, protein_file, ligand_file):
Returns a score for a protein/ligand pair.
raise NotImplementedError
class GridPoseScorer(object):
def __init__(self, model, feat="grid"):