e04c172ab20810a79e15949a1b1a061e540b780c,scipy/stats/kde.py,gaussian_kde,_compute_covariance,#gaussian_kde#,558

Before Change



        self.covariance = self._data_covariance * self.factor**2
        self.inv_cov = self._data_inv_cov / self.factor**2
        self._norm_factor = sqrt(linalg.det(2*pi*self.covariance))

    def pdf(self, x):
        
        Evaluate the estimated pdf on a provided set of points.

After Change


        self.covariance = self._data_covariance * self.factor**2
        self.inv_cov = self._data_inv_cov / self.factor**2
        L = linalg.cholesky(self.covariance*2*pi)
        self.log_det = 2*np.log(np.diag(L)).sum()

    def pdf(self, x):
        
        Evaluate the estimated pdf on a provided set of points.
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 5

Non-data size: 3

Instances


Project Name: scipy/scipy
Commit Name: e04c172ab20810a79e15949a1b1a061e540b780c
Time: 2020-10-26
Author: andrew@mccluskey.scot
File Name: scipy/stats/kde.py
Class Name: gaussian_kde
Method Name: _compute_covariance


Project Name: glm-tools/pyglmnet
Commit Name: fb4b9023f9ec516648d58b4ba2ecd8e241e21618
Time: 2016-11-16
Author: pavan.ramkumar@gmail.com
File Name: pyglmnet/utils.py
Class Name:
Method Name: tikhonov_from_prior


Project Name: cornellius-gp/gpytorch
Commit Name: ad18add8ae7da04213813b5675b903bbf4be1ebd
Time: 2021-02-10
Author: wjm363@nyu.edu
File Name: gpytorch/lazy/kronecker_product_added_diag_lazy_tensor.py
Class Name: KroneckerProductAddedDiagLazyTensor
Method Name: _root_decomposition


Project Name: pyannote/pyannote-audio
Commit Name: 16fb800c2d3f6d7198ad237adcab8f60828d0982
Time: 2017-05-15
Author: bredin@limsi.fr
File Name: pyannote/audio/embedding/segmentation.py
Class Name: Segmentation
Method Name: apply


Project Name: cornellius-gp/gpytorch
Commit Name: ad18add8ae7da04213813b5675b903bbf4be1ebd
Time: 2021-02-10
Author: wjm363@nyu.edu
File Name: gpytorch/lazy/kronecker_product_added_diag_lazy_tensor.py
Class Name: KroneckerProductAddedDiagLazyTensor
Method Name: _root_inv_decomposition