3f74cd386abdc18a4b0b48160686f9654fb22bc1,auto_ml/utils_model_training.py,FinalModelATC,predict_proba,#FinalModelATC#Any#,87
Before Change
if (self.model_name[:16] == "GradientBoosting" or self.model_name in ["BayesianRidge", "LassoLars", "OrthogonalMatchingPursuit", "ARDRegression"]) and scipy.sparse.issparse(X):
X = X.todense()
try:
predictions = self.model.predict_proba(X)
if X.shape[0] == 1:
return predictions[0]
else:
return predictions
except AttributeError as e:
// print("This model has no predict_proba method. Returning results of .predict instead.")
raw_predictions = self.model.predict(X)
tupled_predictions = []
for prediction in raw_predictions:
if prediction == 1:
tupled_predictions.append([0,1])
else:
tupled_predictions.append([1,0])
predictions = tupled_predictions
// return tupled_predictions
if X.shape[0] == 1:
return predictions[0]
else:
return predictions
def predict(self, X):
if self.model_name[:3] == "XGB" and scipy.sparse.issparse(X):
ones = [[1] for x in range(X.shape[0])]
After Change
try:
predictions = self.model.predict(X)
except TypeError as e:
if scipy.sparse.issparse(X):
X = X.todense()
predictions = self.model.predict(X)
except TypeError as e:
if scipy.sparse.issparse(X):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: ClimbsRocks/auto_ml
Commit Name: 3f74cd386abdc18a4b0b48160686f9654fb22bc1
Time: 2016-12-01
Author: ClimbsBytes@gmail.com
File Name: auto_ml/utils_model_training.py
Class Name: FinalModelATC
Method Name: predict_proba
Project Name: ClimbsRocks/auto_ml
Commit Name: 771bac1530fea0fd7a72e69a2f6c8d621a7b02cd
Time: 2016-08-10
Author: ClimbsBytes@gmail.com
File Name: auto_ml/utils.py
Class Name: FinalModelATC
Method Name: fit
Project Name: markovmodel/PyEMMA
Commit Name: ff07957b91c3d78b0e0cfa0f92715e916d2179fb
Time: 2019-05-22
Author: m.scherer@fu-berlin.de
File Name: pyemma/util/numeric.py
Class Name:
Method Name: _hash_numpy_array