layer.set_weights([weights_false_conv])
def _set_model_layers(self, ts_sz, d, n_classes):
inputs = Input(shape=(ts_sz, d), name="input")
shapelet_sizes = sorted(self.n_shapelets_per_size.keys())
pool_layers = []
for i, sz in enumerate(sorted(shapelet_sizes)):
transformer_layer = Conv1D(filters=sz,
After Change
kernel_size=sz,
trainable=False,
use_bias=False,
name="false_conv_%d_%d" % (i, di))(inputs[di]) for di in range(d)]
shapelet_layers = [LocalSquaredDistanceLayer(self.n_shapelets_per_size[sz],
name="shapelets_%d_%d" % (i, di))(transformer_layers[di])
for di in range(d)]