3f2299f9fe6b8928f1c8c576203d6bf5c4b28758,pymc3/variational/stein.py,Stein,dlogp,#Stein#,26
Before Change
)
dlogp = tt.concatenate(list(map(unpack, gradients_for_rmatrices)), axis=-1)
if self.use_histogram:
dlogp = theano.clone(
dlogp,
dict(zip(self.approx.symbolic_randoms, self.approx.collect("histogram")))
)
return dlogp
@node_property
def grad(self):
After Change
@property
def dlogp(self):
return tt.grad(
self.logp_norm.sum(),
self.input_matrix
)
@node_property
def grad(self):
n = floatX(self.input_matrix.shape[0])
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: pymc-devs/pymc3
Commit Name: 3f2299f9fe6b8928f1c8c576203d6bf5c4b28758
Time: 2017-09-02
Author: maxim.v.kochurov@gmail.com
File Name: pymc3/variational/stein.py
Class Name: Stein
Method Name: dlogp
Project Name: catalyst-team/catalyst
Commit Name: 54ca2c098233300e63491dad6932220d01743c56
Time: 2019-06-06
Author: scitator@gmail.com
File Name: catalyst/rl/core/sampler.py
Class Name: Sampler
Method Name: _run_trajectory_loop