6fa78eebb531215d2fb5f5955a9ff353b6b8ddf7,examples/tangent_pca_so3.py,,main,#,19

Before Change


    ax_eig.plot(xticks, eigenvalues)

    ax_var = fig.add_subplot(132)
    xticks = np.arange(0, n_eigenvalues, 1)
    ax_var.xaxis.set_ticks(xticks)
    ax_var.set_title("Explained variance")
    ax_var.set_xlabel("Number of Principal Components")
    ax_var.plot(xticks, explained_variances)

After Change


    mean = METRIC.mean(data)

    tpca = TangentPCA(metric=METRIC, n_components=N_COMPONENTS)
    tpca = tpca.fit(data, base_point=mean)
    tangent_projected_data = tpca.transform(data)
    print(
        "Coordinates of the Log of the first 5 data points at the mean, "
        "projected on the principal components:")
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 2

Instances


Project Name: geomstats/geomstats
Commit Name: 6fa78eebb531215d2fb5f5955a9ff353b6b8ddf7
Time: 2019-08-28
Author: ninamio78@gmail.com
File Name: examples/tangent_pca_so3.py
Class Name:
Method Name: main


Project Name: keras-team/keras
Commit Name: be24159959672c32abb31697e721d96ae6ffaf97
Time: 2016-02-27
Author: ipod825@gmail.com
File Name: keras/wrappers/scikit_learn.py
Class Name: BaseWrapper
Method Name: fit


Project Name: rtavenar/tslearn
Commit Name: 58196a3a29899140a54c8e81bd4a57adefdd793d
Time: 2020-06-12
Author: romain.tavenard@univ-rennes2.fr
File Name: tslearn/docs/examples/classification/plot_early_classification.py
Class Name:
Method Name: