b1de080823e41b921bec2949db2b6c3cb1f1d5ef,examples/plot_feature_rep.py,,,#,30

Before Change


y = data["y"]

// create a feature representation pipeline
feed = Pipeline([("segment", Segment()),
                 ("features", SegFeatures(features = base_features()))])
est = Pipeline([("scaler", StandardScaler()),
                ("rf", RandomForestClassifier())])
pipe = SegPipe(feed, est)

After Change


print("CV Scores: ", pd.DataFrame(cv_scores))

// lets see what feature we used
print("Features: ", pipe.est.steps[0][1].f_labels)

img = mpimg.imread("feet.jpg")
plt.imshow(img)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: dmbee/seglearn
Commit Name: b1de080823e41b921bec2949db2b6c3cb1f1d5ef
Time: 2018-03-11
Author: david.mo.burns@gmail.com
File Name: examples/plot_feature_rep.py
Class Name:
Method Name:


Project Name: scikit-learn/scikit-learn
Commit Name: a49752375d5775b1f0e6393a811c937332dccb18
Time: 2020-05-17
Author: jliu176@gmail.com
File Name: examples/compose/plot_column_transformer.py
Class Name:
Method Name:


Project Name: stanfordnlp/stanza
Commit Name: 04382986f977de4f7bc84bf70ef62915ed0ef2cf
Time: 2019-01-23
Author: jebolton@stanford.edu
File Name: stanfordnlp/run_pipeline.py
Class Name:
Method Name: