e8b2e17f4eec658f6a6d53486dbbe3eac48bb0fa,pyinterpret/core/global_interpretation/partial_dependence.py,PartialDependence,_plot_2d_2_binary_feature,#PartialDependence#Any#Any#Any#Any#Any#Any#,619
Before Change
ax.set_xlabel(feature1)
ax.set_ylabel("Predicted {}".format(class_name))
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles, labels)
return flatten([figure_list, axis_list])
def _plot_2d_1_binary_feature_and_1_continuous(self, pdp, binary_feature,
non_binary_feature, pdp_metadata,
After Change
//feature2 is columns
//feature1 is index
plot_data = pdp.set_index([feature1, feature2])[mean_col].unstack()
plot_data.plot(ax=ax, color=COLORS)
if with_variance:
colors = cycle(COLORS)
binary1_values = plot_data.index.values
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 3
Instances Project Name: datascienceinc/Skater
Commit Name: e8b2e17f4eec658f6a6d53486dbbe3eac48bb0fa
Time: 2017-03-30
Author: aikramer2@gmail.com
File Name: pyinterpret/core/global_interpretation/partial_dependence.py
Class Name: PartialDependence
Method Name: _plot_2d_2_binary_feature
Project Name: datascienceinc/Skater
Commit Name: e8b2e17f4eec658f6a6d53486dbbe3eac48bb0fa
Time: 2017-03-30
Author: aikramer2@gmail.com
File Name: pyinterpret/core/global_interpretation/partial_dependence.py
Class Name: PartialDependence
Method Name: _plot_2d_1_binary_feature_and_1_continuous
Project Name: scikit-learn/scikit-learn
Commit Name: acb8ac5145cfd88fdbd2d381b34883b2c212c8c5
Time: 2020-06-25
Author: drehbleistift@gmail.com
File Name: examples/miscellaneous/plot_isotonic_regression.py
Class Name:
Method Name:
Project Name: richzhang/colorization-pytorch
Commit Name: 1cc19c989ca609584119a1973845e72598d754d4
Time: 2018-09-03
Author: rzhang88@gmail.com
File Name: test_sweep.py
Class Name:
Method Name: