e3a249cd2de8b2518470021db0f579e26cafbfba,aif360/sklearn/inprocessing/adversarial_debiasing.py,AdversarialDebiasing,decision_function,#AdversarialDebiasing#Any#,185
Before Change
"classifier_logits_"])
n_samples = X.shape[0]
groups, _ = check_groups(X, self.prot_attr_)
le = LabelEncoder().fit(self.groups_)
groups = le.transform(groups)
samples_covered = 0
scores = np.empty((n_samples, len(self.classes_)))
while samples_covered < n_samples:
After Change
feed_dict=batch_feed_dict)
samples_covered += len(batch_features)
return scores.ravel() if scores.shape[1] == 1 else scores
def predict_proba(self, X):
decision = self.decision_function(X)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: IBM/AIF360
Commit Name: e3a249cd2de8b2518470021db0f579e26cafbfba
Time: 2020-02-19
Author: hoffman.sc@gmail.com
File Name: aif360/sklearn/inprocessing/adversarial_debiasing.py
Class Name: AdversarialDebiasing
Method Name: decision_function
Project Name: jhfjhfj1/autokeras
Commit Name: cdbb8791ec13d03fd1fcf2580111db677a3ebc29
Time: 2019-12-15
Author: jhfjhfj1@gmail.com
File Name: autokeras/hypermodel/head.py
Class Name: ClassificationHead
Method Name: set_state