45d0afb3145714a6f04697fd64670cc9b07c5a78,snips_nlu/intent_classifier/log_reg_classifier_utils.py,,build_training_data,#Any#Any#Any#Any#Any#,111

Before Change


    noise_class = intent_index

    // Computing dataset statistics
    nb_utterances = [len(intent[UTTERANCES]) for intent in itervalues(intents)]

    augmented_utterances = []
    utterance_classes = []
    for nb_utterance, intent_name in zip(nb_utterances, intents):

After Change



    augmented_utterances = []
    utterance_classes = []
    for intent_name, intent_data in sorted(iteritems(intents)):
        nb_utterances = len(intent_data[UTTERANCES])
        min_utterances_to_generate = max(
            data_augmentation_config.min_utterances, nb_utterances)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: snipsco/snips-nlu
Commit Name: 45d0afb3145714a6f04697fd64670cc9b07c5a78
Time: 2019-06-28
Author: adrien.ball@snips.ai
File Name: snips_nlu/intent_classifier/log_reg_classifier_utils.py
Class Name:
Method Name: build_training_data


Project Name: bokeh/bokeh
Commit Name: ac47ce4d0ea99d090aa4ccfe51133ae6e32ee344
Time: 2015-08-29
Author: nroth@dealnews.com
File Name: bokeh/charts/_data_source.py
Class Name:
Method Name: groupby


Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: f4838c7408b81ad960c047df5984901927a86d86
Time: 2018-10-26
Author: jcastaldo08@gmail.com
File Name: category_encoders/one_hot.py
Class Name: OneHotEncoder
Method Name: generate_mapping