cde27bc0dad15b0bef4b0568f6ac1778920447e5,models/TransformerModel.py,TransformerModel,_prepare_feature,#TransformerModel#Any#Any#Any#,339
Before Change
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
if att_masks is None:
att_masks = att_feats.new_ones(att_feats.shape[:2], dtype=torch.long)
att_masks = att_masks.unsqueeze(-2)
if seq is not None:
// crop the last one
After Change
att_feats, seq, att_masks, seq_mask = self._prepare_feature_forward(att_feats, att_masks)
memory = self.model.encode(att_feats, att_masks)
return fc_feats[...,:1], att_feats[...,:1], memory, att_masks
def _prepare_feature_forward(self, att_feats, att_masks=None, seq=None):
att_feats, att_masks = self.clip_att(att_feats, att_masks)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: ruotianluo/self-critical.pytorch
Commit Name: cde27bc0dad15b0bef4b0568f6ac1778920447e5
Time: 2019-04-07
Author: rluo@ttic.edu
File Name: models/TransformerModel.py
Class Name: TransformerModel
Method Name: _prepare_feature
Project Name: uber/pyro
Commit Name: cce694178ae66b3a84623d517ffdf0c1bb32ba27
Time: 2020-05-11
Author: fehiepsi@gmail.com
File Name: pyro/infer/mcmc/hmc.py
Class Name: HMC
Method Name: _initialize_adapter