if pad_batch:
X = pad_features(self.batch_size, X)
if not self._restored_model:
self.restore()
with self.eval_graph.graph.as_default():
// run eval data through the model
n_tasks = self.n_tasks
with self._get_shared_session(train=False).as_default():
After Change
return loss
def fit(self, dataset, nb_epoch=10, max_checkpoints_to_keep=5,
log_every_N_batches=50, **kwargs):
Fit the model.
Parameters
----------
dataset: dc.data.Dataset
Dataset object holding training data
nb_epoch: 10
Number of training epochs.
max_checkpoints_to_keep: int