fc82df0ff84975f8102a291363abbc01a3986547,examples/adversarial_training_FBF.py,,,#,148

Before Change


tensor_y = torch.Tensor(y_train)

my_dataset = TensorDataset(tensor_x, tensor_y)  // create your datset
my_dataloader = DataLoader(my_dataset)  // create your dataloader

transform = transforms.Compose(
    [transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor()]

After Change



classifier = PyTorchClassifier(
    model=model,
    clip_values=(0.0, 1.0),
    preprocessing=(cifar_mu, cifar_std),
    loss=criterion,
    optimizer=opt,
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: IBM/adversarial-robustness-toolbox
Commit Name: fc82df0ff84975f8102a291363abbc01a3986547
Time: 2020-07-22
Author: ambrish.rawat@ie.ibm.com
File Name: examples/adversarial_training_FBF.py
Class Name:
Method Name:


Project Name: jadore801120/attention-is-all-you-need-pytorch
Commit Name: 15b19130a9162feb9153a2f38c5c8b0af02c6a1d
Time: 2018-08-21
Author: yhhuang@nlg.csie.ntu.edu.tw
File Name: train.py
Class Name:
Method Name: main


Project Name: moskomule/senet.pytorch
Commit Name: 60f86864a6da5a746f9ae51f73ccfdeb29e6b35f
Time: 2018-03-06
Author: hataya@keio.jp
File Name: cifar.py
Class Name:
Method Name: main