def forward(self, features):
// prediction step
h = features
if self.dropout:
h = self.dropout(h)
h = self.activation(self.layers[0](h))
for layer in self.layers[1:-1]:
h = self.activation(layer(h))
if self.dropout:
After Change
h = self.activation(layer(h))
h = self.layers[-1](self.feat_drop(h))
// propagation step
h = self.propagate(h)
return h