46ad98c1b619502c926c657c1a4c4276d2fd1f79,art/defences/adversarial_trainer_unittest.py,TestAdversarialTrainer,test_shared_model_mnist,#TestAdversarialTrainer#,110
Before Change
// Create and fit classifier
params = {"epochs": 5, "batch_size": BATCH_SIZE}
classifier = CNN(im_shape, dataset="mnist")
classifier.compile({"loss": "categorical_crossentropy", "optimizer": "adam", "metrics": ["accuracy"]})
classifier.fit(x_train, y_train, **params)
// Create FGSM attacker
adv = FastGradientMethod(classifier, session)
After Change
// Create and fit classifier
params = {"nb_epochs": 2, "batch_size": BATCH_SIZE}
classifier = self.classifier_k
// Create FGSM attacker
adv = FastGradientMethod(classifier)
x_adv = adv.generate(x_test)
preds = classifier.predict(x_adv)
acc = np.sum(np.argmax(preds, axis=1) == np.argmax(y_test, axis=1)) / y_test.shape[0]
// Perform adversarial training
adv_trainer = AdversarialTrainer(classifier, adv)
adv_trainer.fit(x_train, y_train, **params)
// Evaluate that accuracy on adversarial sample has improved
preds_adv_trained = adv_trainer.classifier.predict(x_adv)
acc_adv_trained = np.sum(np.argmax(preds_adv_trained, axis=1) == np.argmax(y_test, axis=1)) / y_test.shape[0]
print("\nAccuracy before adversarial training: %.2f%%" % (acc * 100))
print("\nAccuracy after adversarial training: %.2f%%" % (acc_adv_trained * 100))
@staticmethod
def _cnn_mnist_tf(input_shape):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 46ad98c1b619502c926c657c1a4c4276d2fd1f79
Time: 2018-05-01
Author: Maria-Irina.Nicolae@ibm.com
File Name: art/defences/adversarial_trainer_unittest.py
Class Name: TestAdversarialTrainer
Method Name: test_shared_model_mnist
Project Name: GPflow/GPflow
Commit Name: dec3dcf7b86168234e38e4f40059abecd3245c44
Time: 2017-10-29
Author: art.art.v@gmail.com
File Name: testing/test_profiling.py
Class Name: TestProfiling
Method Name: test_profile
Project Name: osmr/imgclsmob
Commit Name: 09e4a76102ff4a06a835180237ea171eb475985c
Time: 2018-09-19
Author: osemery@gmail.com
File Name: keras_/models/mobilenet.py
Class Name:
Method Name: _test