0aa422b7911f33dcc5297abed6449be7cc01a517,mr/preprocessing.py,,bandpass,#Any#Any#Any#Any#,30
Before Change
gaussian = ifftn(fourier_gaussian(fftn(image), lshort))
result = gaussian - boxcar
result -= threshold // Features must be this level above the background.
return result.real.clip(min=0.)
def scale_to_gamut(image, original_dtype):
max_value = np.iinfo(original_dtype).max
After Change
boxcar = uniform_filter(image, 2*llong+1, **settings)
gaussian = ifftn(fourier_gaussian(fftn(image), lshort))
result = gaussian - boxcar
return np.where(result > threshold, result.real, 0)
def scale_to_gamut(image, original_dtype):
max_value = np.iinfo(original_dtype).max
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: soft-matter/trackpy
Commit Name: 0aa422b7911f33dcc5297abed6449be7cc01a517
Time: 2013-12-20
Author: daniel.b.allan@gmail.com
File Name: mr/preprocessing.py
Class Name:
Method Name: bandpass
Project Name: adalca/neuron
Commit Name: 2019b3cae62bdb7740e93b0820fb25692c955cd6
Time: 2017-03-16
Author: adalca@mit.edu
File Name: src/pytools/metrics.py
Class Name: weighted_categorical_crossentropy
Method Name: loss
Project Name: CellProfiler/CellProfiler
Commit Name: d7f847ef549265e9e1248bb1ecb7db92c828065f
Time: 2020-09-01
Author: bethac07@users.noreply.github.com
File Name: cellprofiler/modules/correctilluminationapply.py
Class Name: CorrectIlluminationApply
Method Name: run_image