self.logger = self.name
// This way the instance features in X are ignored and a new forest is constructed
// TODO figure out if an already trained forest from the model can be reused!
self.evaluator = fanova_pyrfr(X=model.X[:, :model.X.shape[1] - len(model.instance_features[0])],
Y=model.y, cs=cs)
def plot_result(self, name=None):
After Change
self.name = "fANOVA"
self.logger = self.name
// This way the instance features in X are ignored and a new forest is constructed
self._preprocess(self.X)
self.evaluator = fanova_pyrfr(X=self.X, Y=self.y.flatten(), config_space=cs, config_on_hypercube=True)
def _preprocess(self, X):