fb4b9023f9ec516648d58b4ba2ecd8e241e21618,pyglmnet/utils.py,,tikhonov_from_prior,#Any#Any#,73
Before Change
Given a prior covariance matrix, returns a Tikhonov matrix
[U, S, V] = np.linalg.svd(PriorCov, full_matrices=False)
Tau = np.dot(np.diag(1. / np.sqrt(S)), U)
Tau = 1. / np.sqrt(np.float(n_samples) ) * Tau / Tau.max()
return Tau
After Change
S_inv[zero_indices] = threshold
S_inv[nonzero_indices] = 1. / S_inv[nonzero_indices]
Tau = np.dot(np.diag(S_inv), V)
n_features = Tau.shape[0]
Tau = 1. / n_features * Tau
return Tau
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: glm-tools/pyglmnet
Commit Name: fb4b9023f9ec516648d58b4ba2ecd8e241e21618
Time: 2016-11-16
Author: pavan.ramkumar@gmail.com
File Name: pyglmnet/utils.py
Class Name:
Method Name: tikhonov_from_prior
Project Name: prody/ProDy
Commit Name: e3129a9fb90b53fd5328a111dbabf7fed0a9f3b7
Time: 2019-06-17
Author: shz66@pitt.edu
File Name: prody/dynamics/rtb.py
Class Name: RTB
Method Name: calcProjection
Project Name: huazhengwang/BanditLib
Commit Name: 10a3aff02e633faa4f546bfc482e746f2f0d6b7f
Time: 2018-02-25
Author: bjw4ph@virginia.edu
File Name: Rewards/Reward.py
Class Name: Reward
Method Name: getOptimalReward