if seed is not None:
// Make training deterministic.
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
best_epoch_stats = None
if load_best_checkpoint:
After Change
Returns:
dict sorting of all the test metrics values by their names.
set_seeds(seed)
best_epoch_stats = self.load_checkpoint(checkpoint)
test_loss, test_metrics = self.model.evaluate_generator(test_generator, steps=steps)