7c6e84bbf65bcbade78e78d6120ca0997dff7c28,examples/pendulum_sac.py,,experiment,#Any#Any#Any#Any#,67
Before Change
dataset = core.evaluate(n_steps=n_steps_test, render=False)
J = compute_J(dataset, gamma)
s, *_ = parse_dataset(dataset)
print("J:", np.mean(J), "E:", agent.policy.entropy(s))
print("Press a button to visualize pendulum")
input()
After Change
def experiment(alg, n_epochs, n_steps, n_steps_test):
np.random.seed()
logger = Logger(alg.__name__, results_dir=None)
logger.strong_line()
logger.info("Experiment Algorithm: " + alg.__name__)
// MDP
horizon = 200
gamma = 0.99
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: AIRLab-POLIMI/mushroom
Commit Name: 7c6e84bbf65bcbade78e78d6120ca0997dff7c28
Time: 2021-01-11
Author: boris.ilpossente@hotmail.it
File Name: examples/pendulum_sac.py
Class Name:
Method Name: experiment
Project Name: AIRLab-POLIMI/mushroom
Commit Name: 7c6e84bbf65bcbade78e78d6120ca0997dff7c28
Time: 2021-01-11
Author: boris.ilpossente@hotmail.it
File Name: examples/pendulum_ddpg.py
Class Name:
Method Name: experiment
Project Name: facebookresearch/Horizon
Commit Name: e3fcbb639e115e8afe9600bd06aee81acfda6704
Time: 2020-10-13
Author: czxttkl@fb.com
File Name: reagent/training/world_model/seq2reward_trainer.py
Class Name: Seq2RewardTrainer
Method Name: train