7c6e84bbf65bcbade78e78d6120ca0997dff7c28,examples/pendulum_sac.py,,experiment,#Any#Any#Any#Any#,67

Before Change


        dataset = core.evaluate(n_steps=n_steps_test, render=False)
        J = compute_J(dataset, gamma)
        s, *_ = parse_dataset(dataset)
        print("J:", np.mean(J), "E:", agent.policy.entropy(s))

    print("Press a button to visualize pendulum")
    input()

After Change


def experiment(alg, n_epochs, n_steps, n_steps_test):
    np.random.seed()

    logger = Logger(alg.__name__, results_dir=None)
    logger.strong_line()
    logger.info("Experiment Algorithm: " + alg.__name__)

    // MDP
    horizon = 200
    gamma = 0.99
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: AIRLab-POLIMI/mushroom
Commit Name: 7c6e84bbf65bcbade78e78d6120ca0997dff7c28
Time: 2021-01-11
Author: boris.ilpossente@hotmail.it
File Name: examples/pendulum_sac.py
Class Name:
Method Name: experiment


Project Name: AIRLab-POLIMI/mushroom
Commit Name: 7c6e84bbf65bcbade78e78d6120ca0997dff7c28
Time: 2021-01-11
Author: boris.ilpossente@hotmail.it
File Name: examples/pendulum_ddpg.py
Class Name:
Method Name: experiment


Project Name: facebookresearch/Horizon
Commit Name: e3fcbb639e115e8afe9600bd06aee81acfda6704
Time: 2020-10-13
Author: czxttkl@fb.com
File Name: reagent/training/world_model/seq2reward_trainer.py
Class Name: Seq2RewardTrainer
Method Name: train