for idx, val in enumerate(y):
try:
float_val = float(val)
if pd.notnull(float_val):
y_floats.append(float_val)
else:
indices_to_delete.append(idx)
After Change
// Drop all rows that have an empty value for our output column
// User logging so they can adjust if they pass in a bunch of bad values:
bad_rows = X_df[pd.isnull(X_df[self.output_column])]
if bad_rows.shape[0] > 0:
print("We encountered a number of missing values for this output column")
print("Specifically, here is the output column:")
print(self.output_column)