33851dea0f6c75ca1e685037393ea7160506b53a,auto_ml/predictor.py,Predictor,_prepare_for_training,#Predictor#Any#,207

Before Change


            for idx, val in enumerate(y):
                try:
                    float_val = float(val)
                    if pd.notnull(float_val):
                        y_floats.append(float_val)
                    else:
                        indices_to_delete.append(idx)

After Change



        // Drop all rows that have an empty value for our output column
        // User logging so they can adjust if they pass in a bunch of bad values:
        bad_rows = X_df[pd.isnull(X_df[self.output_column])]
        if bad_rows.shape[0] > 0:
            print("We encountered a number of missing values for this output column")
            print("Specifically, here is the output column:")
            print(self.output_column)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: ClimbsRocks/auto_ml
Commit Name: 33851dea0f6c75ca1e685037393ea7160506b53a
Time: 2016-10-08
Author: climbsbytes@gmail.com
File Name: auto_ml/predictor.py
Class Name: Predictor
Method Name: _prepare_for_training


Project Name: ClimbsRocks/auto_ml
Commit Name: 9b9e491bb00be66b732d2f44b3e4375206940e61
Time: 2016-10-19
Author: climbsbytes@gmail.com
File Name: auto_ml/predictor.py
Class Name: Predictor
Method Name: make_sub_x_and_y_test


Project Name: J535D165/recordlinkage
Commit Name: 229bb52ad2111d0038a87dd65bf8fbf227a8f48b
Time: 2016-08-20
Author: jonathandebruinhome@gmail.com
File Name: recordlinkage/indexing.py
Class Name:
Method Name: _sortedneighbourhood