1b9d2228bc40f817ef1765686bc2ec6e81079d13,mne/preprocessing/tests/test_ssp.py,,test_compute_proj_ctf,#,136
Before Change
// Test with and without gradient compensation
for c in [0, 1]:
raw.apply_gradient_compensation(c)
for average in [False, True]:
n_projs_init = len(raw.info["projs"])
projs, events = compute_proj_eog(raw, n_mag=2, n_grad=2, n_eeg=2,
average=average,
ch_name="EEG059",
avg_ref=True, no_proj=False,
l_freq=None, h_freq=None,
reject=None, tmax=dur_use,
filter_length=6000)
_check_projs_for_expected_channels(projs, n_mags, n_grads, n_eegs)
assert len(projs) == (5 + n_projs_init)
projs, events = compute_proj_ecg(raw, n_mag=1, n_grad=1, n_eeg=2,
average=average,
ch_name="EEG059",
avg_ref=True, no_proj=False,
l_freq=None, h_freq=None,
reject=None, tmax=dur_use,
filter_length=6000)
_check_projs_for_expected_channels(projs, n_mags, n_grads, n_eegs)
assert len(projs) == (4 + n_projs_init)
run_tests_if_main()
After Change
eeg_picks = pick_types(raw.info, meg=False, eeg=True, ref_meg=False,
exclude="bads")[2::3]
n_eegs = len(eeg_picks)
ref_picks = pick_types(raw.info, meg=False, ref_meg=True)
raw.pick(np.sort(np.concatenate(
[mag_picks, grad_picks, eeg_picks, ref_picks])))
del mag_picks, grad_picks, eeg_picks, ref_picks
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: mne-tools/mne-python
Commit Name: 1b9d2228bc40f817ef1765686bc2ec6e81079d13
Time: 2020-12-17
Author: larson.eric.d@gmail.com
File Name: mne/preprocessing/tests/test_ssp.py
Class Name:
Method Name: test_compute_proj_ctf
Project Name: autoreject/autoreject
Commit Name: ab1e700e55f26fca141c2439ddcc52316dde9e19
Time: 2017-08-12
Author: denis.engemann@gmail.com
File Name: autoreject/tests/test_autoreject.py
Class Name:
Method Name: test_autoreject
Project Name: mne-tools/mne-python
Commit Name: 9f231cfa8416b5bfe06dc996fa6d50c87b488d37
Time: 2021-01-07
Author: larson.eric.d@gmail.com
File Name: examples/inverse/plot_multidict_reweighted_tfmxne.py
Class Name:
Method Name: