np.save(samples, np.array([X_train, Y_train, X_test, Y_test]))
// Load model structure and weights.
model = load_model(settings["filename"])
// Extract architecture and weights from model.
snn = SNN(model)
if settings["verbose"] > 0:
After Change
if len(params) > 1 and settings["verbose"] > 0:
print("Testing SNN for hyperparameter values {} = ".format(param_name))
print(["{:.2f}".format(i) for i in params])
print("\n")
// Loop over parameter to sweep
for p in params:
assert param_name in settings, "Unkown parameter"