66268ffdc847e64216114871bd4169ad7872966a,snntoolbox/simulation/target_simulators/pyNN_target_sim.py,SNN,simulate,#SNN#,134
Before Change
def simulate(self, **kwargs):
if self._poisson_input:
rates = kwargs[str("x_b_l")].flatten()
for neuron_idx, neuron in enumerate(self.layers[0]):
neuron.rate = rates[neuron_idx] / self.rescale_fac * 1000
elif self._dataset_format == "aedat":
raise NotImplementedError
else:
constant_input_currents = kwargs[str("x_b_l")].flatten()
After Change
x_flat = np.ravel(data)
if self._poisson_input:
self.layers[0].set(rate=list(x_flat / self.rescale_fac * 1000))
elif self._dataset_format == "aedat":
raise NotImplementedError
else:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: NeuromorphicProcessorProject/snn_toolbox
Commit Name: 66268ffdc847e64216114871bd4169ad7872966a
Time: 2019-04-11
Author: bodo.rueckauer@intel.com
File Name: snntoolbox/simulation/target_simulators/pyNN_target_sim.py
Class Name: SNN
Method Name: simulate
Project Name: NeuromorphicProcessorProject/snn_toolbox
Commit Name: 08a4d83a7836b0de430850e72a64e283bdc56d05
Time: 2017-07-17
Author: bodo.rueckauer@gmail.com
File Name: snntoolbox/simulation/plotting.py
Class Name:
Method Name: output_graphs
Project Name: NifTK/NiftyNet
Commit Name: 984d17836d7a6240942cd44f2f61c92a427bb9bb
Time: 2018-04-24
Author: z.eaton-rosen@ucl.ac.uk
File Name: niftynet/layer/crop.py
Class Name: CropLayer
Method Name: layer_op