// type: (Dict, Dict) -> Estimator
Select the best estimator from the set of estimators.
best_model_id = first(results.info)
key = operator.itemgetter("model_id")
best_index = -1
// history_results is sorted by (model_id, partial_fit_calls)
// best is the model_id with the highest partial fit calls
for k, v in itertools.groupby(history_results, key=key):
After Change
// Happens in the test case a lot
model_ids = list(scores.keys())
scores = [scores[k] for k in model_ids]
model_idx = np.argmax(scores)
best_model_id = model_ids[model_idx]
best_est = results.models[best_model_id]