d1de2f98ec8f851228e28bf28a0f800e90bd9bcf,pyemma/msm/estimators/maximum_likelihood_msm.py,AugmentedMarkovModel,_estimate,#AugmentedMarkovModel#Any#,1712
Before Change
self._phs.append(self.pihat)
self._ls.append(self.lagrange.copy())
self._mhats.append(_np.array(self.mhat))
self._rmss.append(_np.average(self.E, weights=self.pihat.reshape((self.n_mstates_active,)), axis=0))
if i>1 and _np.all((_np.abs(self._dmhat)/self.sigmas)<self.eps) and not self._converged:
self.logger.info("Converged Lagrange multipliers after %i steps..."%i)
self._converged = True
After Change
self._estimated = True
//if Lagrange multipliers are converged, check whether log-likelihood has converged
if self._converged:
if _np.abs(self._lls[-2]-self._lls[-1]) <1e-8:
self.logger.info("Converged pihat after %i steps..."%i)
die = True
if die:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: markovmodel/PyEMMA
Commit Name: d1de2f98ec8f851228e28bf28a0f800e90bd9bcf
Time: 2017-12-21
Author: m.scherer@fu-berlin.de
File Name: pyemma/msm/estimators/maximum_likelihood_msm.py
Class Name: AugmentedMarkovModel
Method Name: _estimate
Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: f09a705de11b1b6ade4a7353f238e8f379d15ce5
Time: 2017-12-05
Author: max.lapan@gmail.com
File Name: ch09/04_pong_pg.py
Class Name:
Method Name:
Project Name: Kaixhin/Rainbow
Commit Name: 1203e6a3f3550228f760a4373e81c836e339dce3
Time: 2017-11-26
Author: design@kaixhin.com
File Name: memory.py
Class Name: ReplayMemory
Method Name: append