b3dab0288ddcd165e2ba6f95061b5f3d7bf82a1a,GPflow/vgp.py,VGP,build_predict,#VGP#Any#Any#,122
Before Change
f_mean = tf.matmul(Kx, self.q_alpha) + self.mean_function(Xnew)
// predictive var
f_var = []
for d in range(self.num_latent):
b = self.q_lambda[:, d]
A = K + tf.diag(1./tf.square(b))
L = tf.cholesky(A)
LiKx = tf.matrix_triangular_solve(L, tf.transpose(Kx), lower=True)
if full_cov:
f_var.append(self.kern.K(Xnew) -
tf.matmul(tf.transpose(LiKx), LiKx))
else:
f_var.append(self.kern.Kdiag(Xnew) -
tf.reduce_sum(tf.square(LiKx), 0))
f_var = tf.pack(f_var)
return f_mean, tf.transpose(f_var)
After Change
f_mean = tf.matmul(tf.transpose(Kx), self.q_alpha) + self.mean_function(Xnew)
// predictive var
A = K + tf.batch_matrix_diag(tf.transpose(1./tf.square(self.q_lambda)))
L = tf.batch_cholesky(A)
Kx_tiled = tf.tile(tf.expand_dims(Kx, 0), [self.num_latent, 1, 1])
LiKx = tf.batch_matrix_triangular_solve(L, Kx_tiled)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: GPflow/GPflow
Commit Name: b3dab0288ddcd165e2ba6f95061b5f3d7bf82a1a
Time: 2016-08-10
Author: james.hensman@gmail.com
File Name: GPflow/vgp.py
Class Name: VGP
Method Name: build_predict
Project Name: GPflow/GPflow
Commit Name: 4d628f1716c24f9ef6552b57d4d021c101620ba1
Time: 2016-06-28
Author: james.hensman@gmail.com
File Name: GPflow/kernels.py
Class Name: Kern
Method Name: _slice
Project Name: GPflow/GPflow
Commit Name: 921362e76cc476d008c78f390b61db4a280c7c73
Time: 2016-06-24
Author: james.hensman@gmail.com
File Name: GPflow/likelihoods.py
Class Name: MultiClass
Method Name: predict_mean_and_var