6efe8ce53b30db7dd08dd727b23d6acb11796a8a,examples/grid_world.py,,,#,54

Before Change



    np.save("rQ1.npy", np.mean(rewardQ1, axis=0))
    np.save("rQ08.npy", np.mean(rewardQ08, axis=0))
    np.save("rDQ1.npy", np.mean(rewardDQ1, axis=0))
    np.save("rDQ08.npy", np.mean(rewardDQ08, axis=0))

After Change



    logger.Logger(3)

    names = {1:"1", 0.8:"08", QLearning:"Q", DoubleQLearning:"DQ"}
    for e in [1, .8]:
        for a in [QLearning, DoubleQLearning]:
            r = Parallel(n_jobs=-1)(
                delayed(experiment)(a, e) for _ in xrange(n_experiment))
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: AIRLab-POLIMI/mushroom
Commit Name: 6efe8ce53b30db7dd08dd727b23d6acb11796a8a
Time: 2017-06-06
Author: samuele.tosatto@gmail.com
File Name: examples/grid_world.py
Class Name:
Method Name:


Project Name: GoogleCloudPlatform/cloudml-samples
Commit Name: 01ed847eea06300d278ffcf1214021b487d3d463
Time: 2017-03-07
Author: elibixby@google.com
File Name: flowers/trainer/model.py
Class Name: Model
Method Name: export


Project Name: GoogleCloudPlatform/cloudml-samples
Commit Name: 01ed847eea06300d278ffcf1214021b487d3d463
Time: 2017-03-07
Author: elibixby@google.com
File Name: mnist/distributed/trainer/model.py
Class Name: Model
Method Name: export