6efe8ce53b30db7dd08dd727b23d6acb11796a8a,examples/grid_world.py,,,#,54
Before Change
np.save("rQ1.npy", np.mean(rewardQ1, axis=0))
np.save("rQ08.npy", np.mean(rewardQ08, axis=0))
np.save("rDQ1.npy", np.mean(rewardDQ1, axis=0))
np.save("rDQ08.npy", np.mean(rewardDQ08, axis=0))
After Change
logger.Logger(3)
names = {1:"1", 0.8:"08", QLearning:"Q", DoubleQLearning:"DQ"}
for e in [1, .8]:
for a in [QLearning, DoubleQLearning]:
r = Parallel(n_jobs=-1)(
delayed(experiment)(a, e) for _ in xrange(n_experiment))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: AIRLab-POLIMI/mushroom
Commit Name: 6efe8ce53b30db7dd08dd727b23d6acb11796a8a
Time: 2017-06-06
Author: samuele.tosatto@gmail.com
File Name: examples/grid_world.py
Class Name:
Method Name:
Project Name: GoogleCloudPlatform/cloudml-samples
Commit Name: 01ed847eea06300d278ffcf1214021b487d3d463
Time: 2017-03-07
Author: elibixby@google.com
File Name: flowers/trainer/model.py
Class Name: Model
Method Name: export
Project Name: GoogleCloudPlatform/cloudml-samples
Commit Name: 01ed847eea06300d278ffcf1214021b487d3d463
Time: 2017-03-07
Author: elibixby@google.com
File Name: mnist/distributed/trainer/model.py
Class Name: Model
Method Name: export