e6c8024fcceb9b47b82425a588988a63a365d544,09_softmax_mnist.py,,,#,12
Before Change
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST("../data", train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
After Change
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root="./data/",
train=False,
transform=transforms.ToTensor())
// Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 3
Instances
Project Name: hunkim/PyTorchZeroToAll
Commit Name: e6c8024fcceb9b47b82425a588988a63a365d544
Time: 2017-10-07
Author: hunkim@gmail.com
File Name: 09_softmax_mnist.py
Class Name:
Method Name:
Project Name: pfnet/optuna
Commit Name: da6655eaf33d512c2ea7a947cd7d2d09532c0bc8
Time: 2020-04-13
Author: phjgt308@gmail.com
File Name: examples/multi_objective/pytorch_simple.py
Class Name:
Method Name: get_mnist
Project Name: Scitator/catalyst
Commit Name: 2860e37da4e0b1335f25fcb0f62ab2d81698c752
Time: 2020-01-23
Author: 19803638+bagxi@users.noreply.github.com
File Name: examples/_tests_mnist_stages2/experiment.py
Class Name: Experiment
Method Name: get_datasets