e6c8024fcceb9b47b82425a588988a63a365d544,09_softmax_mnist.py,,,#,12

Before Change


    ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST("../data", train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=batch_size, shuffle=True)

After Change


                               transform=transforms.ToTensor(),
                               download=True)

test_dataset = datasets.MNIST(root="./data/",
                              train=False,
                              transform=transforms.ToTensor())

// Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 3

Instances


Project Name: hunkim/PyTorchZeroToAll
Commit Name: e6c8024fcceb9b47b82425a588988a63a365d544
Time: 2017-10-07
Author: hunkim@gmail.com
File Name: 09_softmax_mnist.py
Class Name:
Method Name:


Project Name: pfnet/optuna
Commit Name: da6655eaf33d512c2ea7a947cd7d2d09532c0bc8
Time: 2020-04-13
Author: phjgt308@gmail.com
File Name: examples/multi_objective/pytorch_simple.py
Class Name:
Method Name: get_mnist


Project Name: Scitator/catalyst
Commit Name: 2860e37da4e0b1335f25fcb0f62ab2d81698c752
Time: 2020-01-23
Author: 19803638+bagxi@users.noreply.github.com
File Name: examples/_tests_mnist_stages2/experiment.py
Class Name: Experiment
Method Name: get_datasets