valsB = valsA[(valsA.T != 0)]
means.append(np.nanmean(valsB))
else:
means.append(np.nan)
df_concatted_weight_means = pd.DataFrame(means).transpose()
df_concatted_weight_means.columns = [str(col) + "_mean" for col in measures]
df_concatted_std.columns = [str(col) + "_std_dev" for col in df_concatted_std.columns]
result = pd.concat([df_concatted, df_concatted_std, df_concatted_weight_means], axis=1)