75afcd766e0e45fdb8bd3007b3114257f11a7ec4,tutorials/auto_scheduler/tune_conv2d_layer_cuda.py,,,#,70

Before Change


// Rebuild the binary. This shows how you can apply the best schedule from a
// log file without reruning the search again.
sch, args = task.compute_dag.apply_steps_from_state(inp.state)
func = tvm.build(sch, args, target)

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// A more complicated example is to resume the search.
// In this case, we need to create the search policy and cost model by ourselves

After Change


print("Equivalent python schedule:")
print(task.print_best(log_file, print_mode="schedule"))

print("CUDA source code:")
print(task.print_best(log_file, print_mode="cuda"))

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// A more complicated example is to resume the search.
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: apache/incubator-tvm
Commit Name: 75afcd766e0e45fdb8bd3007b3114257f11a7ec4
Time: 2020-12-04
Author: lianminzheng@gmail.com
File Name: tutorials/auto_scheduler/tune_conv2d_layer_cuda.py
Class Name:
Method Name:


Project Name: apache/incubator-tvm
Commit Name: 75afcd766e0e45fdb8bd3007b3114257f11a7ec4
Time: 2020-12-04
Author: lianminzheng@gmail.com
File Name: tutorials/auto_scheduler/tune_matmul_x86.py
Class Name:
Method Name:


Project Name: GoogleCloudPlatform/python-docs-samples
Commit Name: 6f9eacfd1d5f6ebf961d134f538e7613c0b9fc25
Time: 2019-01-07
Author: d.sanche14@gmail.com
File Name: kms/api-client/snippets.py
Class Name:
Method Name: get_key_ring_policy