// TODO: Correct the way to find standard error
// 1 standard error analysis
average_file_size = sum(file_sizes_list) / len(file_sizes_list)
// Calculate the standard deviation
std_dev_file_size = np.std(file_sizes_list)
// Calculate the anomaly
for file in l_files:
After Change
file_sizes = np.sum(count_matrix, axis=1)
// TODO: Correct the way to find standard error
// 1 standard error analysis
average_file_size = np.average(file_sizes)
// Calculate the standard deviation
std_dev_file_size = np.std(file_sizes)
// Calculate the anomaly
for count, label in enumerate(labels):