"are blocked.")
raise
def run_application(self):
Initialise a TF graph, connect data sampler and network within
the graph context, run training loops or inference loops.
The training loop terminates when ``self.final_iter`` reached.
The inference loop terminates when there is no more
image sample to be processed from image reader.
:return:
config = ApplicationDriver._tf_config()
with tf.Session(config=config, graph=self.graph) as session:
tf.logging.info("Filling queues (this can take a few minutes)")
self._coord = tf.train.Coordinator()
// start samplers" threads
self._run_sampler_threads(session=session)
self.graph = self._create_graph(self.graph)
self.app.check_initialisations()