bd6871fa3f9c39227a02cf3e9a37e5515d27d900,benchmarks/benchmarks/sparse_csgraph_matching.py,MaximumBipartiteMatching,setup,#MaximumBipartiteMatching#Any#Any#,15

Before Change


    param_names = ["n", "density"]

    def setup(self, n, density):
        graph = scipy.sparse.rand(n, n, density=density,
                                  format="csr", random_state=42)
        self.graph = graph

    def time_maximum_bipartite_matching(self, n, density):
        maximum_bipartite_matching(self.graph)

After Change


        // Create random sparse matrices. Note that we could use
        // scipy.sparse.rand for this purpose, but simply using np.random and
        // disregarding duplicates is quite a bit faster.
        np.random.seed(42)
        d = np.random.randint(0, n, size=(int(n*n*density), 2))
        graph = scipy.sparse.csr_matrix((np.ones(len(d)), (d[:, 0], d[:, 1])),
                                        shape=(n, n))
        self.graph = graph
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 2

Instances


Project Name: scipy/scipy
Commit Name: bd6871fa3f9c39227a02cf3e9a37e5515d27d900
Time: 2019-11-12
Author: s@fuglede.dk
File Name: benchmarks/benchmarks/sparse_csgraph_matching.py
Class Name: MaximumBipartiteMatching
Method Name: setup


Project Name: lanpa/tensorboardX
Commit Name: 27acb26bae061d1fed26e8e55c7ed97ed2f06ae3
Time: 2019-03-08
Author: huang.dexter@gmail.com
File Name: tests/test_summary.py
Class Name: SummaryTest
Method Name: test_image_with_one_channel


Project Name: matplotlib/matplotlib
Commit Name: c5763581d69a62bcab440bca6699dd46bd49367e
Time: 2020-04-15
Author: quantum.analyst@gmail.com
File Name: examples/event_handling/image_slices_viewer.py
Class Name:
Method Name: