def prepare_new_batch(self, batch_index):
context = self.model.computation_context
pending_batches = context.output_supply[self.model.parameters[0]]
// TODO: take values from the pool
pending_params = []
for output in pending_batches.values():
After Change
new_param = self.init_acquisition.acquire(1, pending_params, t)
// Save the next evaluation location to the pool
self.pool.add_batch(batch_index, dict(zip(self.parameters, new_param[0])))
def extract_result(self):
param, min_value = stochastic_optimization(self.target_model.predict_mean,
self.target_model.bounds)